Phase stability of the intermetallic L2₁ Heusler alloys of $A_2(\text{Hf}_{1-x}\text{Zr}_x)\text{Al}$ (where $A=$Pd and Pt) for an Nb-based high-temperature materials design

Miyoung Kim
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, and BK21 Physics Research Division, Seoul National University, Seoul, Korea

A. J. Freemana)
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

Sungtae Kim and J. H. Perepezko
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706

G. B. Olson
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208

(Received 13 June 2005; accepted 27 September 2005; published online 21 December 2005)

First principles phase stability calculations are used to predict the lattice mismatches between Nb and the $A_2(\text{Hf}_{1-x}\text{Zr}_x)\text{Al}$ L2₁ Heusler phases and the L2₁ phase formation energies, where $A=$Pd and/or Pt, and $x=0, 0.25, 0.75$ and 1. The calculated L2₁ phase mixing energy demonstrates that the Hf-Zr solution phases in the form of $A_2(\text{Hf}_{1-x}\text{Zr}_x)\text{Al}$ ($x \neq 0$ and 1) are energetically favored, although the Zr-rich alloys exhibit a smaller lattice mismatch than the Hf-rich alloys. The introduction of Pt reduces the lattice mismatch, and forms the energetically favorable (PtPd)XAl Heusler phase, where $X=$Hf and Zr. A number of critical diffusion couple experiments confirm the phase stability predictions and establish new microstructural design parameters. © 2005 American Institute of Physics. [DOI: 10.1063/1.2136223]

The design of materials for high-temperature operation is a critical challenge for aerospace applications that requires the concurrent attainment of a high melting point, good oxidation resistance, and low density, together with high-temperature strength and adequate ductility. While the Ni-base superalloys are in current widespread use, their melting temperature capabilities are further improvement of their high-temperature capabilities. While a modest increase in high-temperature capability is possible with NiAl-(B2-) based alloys, Nb, and Nb based alloys are more attractive candidates because of the high melting temperature (2468 °C), low density (8.6×10^3 kg/m3) and lower diffusivity of Nb compared to that of Ni. In designing Nb-based high-temperature materials, it is quite appealing to search for the L2₁ ternary materials, it is quite appealing to search for the L2₁ ternary

X-Al L2₁ Heusler phases and the L2₁ phase formation energies, where $X=$Hf and Zr. A complete mixing was confirmed by EPMA of the PtHfAl and PtPdZrAl alloys. The results obtained predict the possible interdiffusive mixing of Hf and Zr between the existing separate single phases of $A_x\text{HfAl}$ and $A_x\text{ZrAl}$ for both $A=$Pd and Pt, with the mixing energy of 0.1–0.9 mRy/f.u. depending on the composition ratio of Hf and Zr. A complete mixing was confirmed by EPMA measurements and SEM observations on a diffusion couple for the Pd case. Also, the Pt-Pd solution L2₁ phase in the form of PtPdXAl is shown to be energetically favored over the separate single phases of Pt$_2$XAl and Pd$_2$XAl for both $X=$Hf and Zr with their mixing energies one order larger compared to the Hf-Zr mixing phases. As a promising candidate-strengthening phase for Nb-based high-temperature alloys, the inclusion of Zr and Pt in the L2₁

a)Author to whom correspondence should be addressed.
Heusler-type phases indicates an advantage of a reduced lattice mismatch with a Nb matrix.

The atomic structure of the single phase has four atoms in a primitive unit cell. Then, the solution phase of Hf and Zr, $A_2(Hf_{1-x}Zr_x)Al$, is formed by stacking these cubic cells of A_2HfAl and A_2ZrAl into a $2 \times 2 \times 2$ structure, so that the Hf and Zr atoms form the L_12 cubic structure, where the primitive unit cell has 16 atoms [cf. Fig. 1 for $Pt_2(Hf_{0.25}Zr_{0.75})Al$]. The lattice constants are determined from total energy calculations within both the local density approximation (LDA)\(^6\) and the generalized gradient approximation (GGA).\(^7\) The formation energy, E_{form}, is calculated by subtracting the sum of the total energies for the constituent metals from the total energy of the compound, that is, $E_{\text{form}} = E(M,N) - [aE(M) + bE(N)]$.

The calculated lattice constants, lattice mismatch with Nb, and formation energies are listed in Table I. For the lattice constants, the local density approximation (LDA) predicts good agreement with the experiment (to within a 0.1% and 0.2% mismatch) while the generalized gradient approximation (GGA) overestimates them by 1.2% and 1.4% for Pd_2HfAl and Pd_2ZrAl, respectively. Thus, the LDA provides reliable lattice constants for these materials, even though GGA is known to give good bond lengths for some 3d-transition metal compounds, and so further discussion will be based on the LDA results.

As expected, the Pt Heusler alloys give larger lattice constants than those for the Pd alloys. In terms of the lattice mismatch with Nb, choosing Zr as the quaternary element is found to be more favorable over the Hf or the solution phase of Hf and Zr, among which the single phase of Pt_2ZrAl is best with a -2.60% of misfit. However, the calculation predicts that the Hf alloys show larger formation energies compared to the Zr alloys (cf. Pd_2HfAl vs Pd_2ZrAl or Pt_2HfAl vs Pt_2ZrAl). Consistent with this, the solution phase with more Hf [i.e., $A_2(Hf_{0.75}Zr_{0.25})Al$] has a larger formation energy than those with more Zr [i.e., $A_2(Hf_{0.25}Zr_{0.75})Al$].

Another interesting, and probably more important, result is that the solution phases are energetically favored over the separate single phases. A formation energy comparison of the alloys with $x=0.25$ or 0.75 (solution phase) with those with $x=0$ or 1 (separate single phases) shows that there will be a slight energy gain of the Hf-Zr solution phase formation over the separate single phases. In order to demonstrate the phase stability clearly, the calculated mixing energy, E_{mixing}, is shown in Table I. The mixing energy is defined by the formation energy difference of the solution and separate phases. A negative mixing energy means that the solution phase is energetically more stable over the separate single phases. For example, the formation energy of the solution phase $Pt_2(Hf_{0.75}Zr_{0.25})Al$ from Pt_2HfAl and Pt_2ZrAl is calculated by

$$E_{\text{mixing}}[Pt_2(Hf_{0.75}Zr_{0.25})Al] = \frac{1}{4}(E_{\text{form}}[Pt_2(Hf_{0.75}Zr_{0.25})Al] - [3E_{\text{form}}(Pt_2HfAl) + E_{\text{form}}(Pt_2ZrAl)])$$

meaning that the formation $Pt_2(Hf_{0.75}Zr_{0.25})Al$ from Pt_2HfAl and Pt_2ZrAl will release 0.7 mRy per four-atoms-formula unit. As can be seen from Table I, it was found that all solution phases (the solution of Hf-Zr as well as Pt-Pd) are energetically preferred over the separate single phases, with the mixing energy of Pt-Pd larger by one order compared to the Hf-Zr mixing case.

The predicted phase stability of the Hf-Zr solution phase, $Pd_2(Hf,Zr)Al$, was examined critically by performing a Pd_2HfAl/Pd_2ZrAl diffusion couple experiment. The Pd_2HfAl and Pd_2ZrAl alloys were initially prepared by re-

![FIG. 1. Atomic structures of the mixed phase, $Pt_2(Hf_{0.25}Zr_{0.75})Al$. Note that the replacement of Hf with Zr generates the L_21 Heusler alloy of Pt_2ZrAl.](image-url)

<p>| Table I. The calculated lattice constants, lattice mismatch with Nb, and formation energy. For easy comparison, the energies are given in mRy per four-atoms formula unit (f.u.). The error bar is ±0.05 mRy/f.u. for the calculated energies. |
|---------------------------------|------------------|------------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Lattice constant (nm)</th>
<th>Nb mismatch (%)</th>
<th>E_{form} (mRy/f.u.)</th>
<th>E_{mixing} (mRy/f.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd_2HfAl</td>
<td>0.635</td>
<td>0.646</td>
<td>0.637</td>
</tr>
<tr>
<td>Pd_2ZrAl</td>
<td>0.639</td>
<td>0.647</td>
<td>0.640</td>
</tr>
<tr>
<td>$Pd_2(Hf_{0.75}Zr_{0.25})Al$</td>
<td>0.634</td>
<td>0.646</td>
<td>−4.0</td>
</tr>
<tr>
<td>$Pd_2(Hf_{0.25}Zr_{0.75})Al$</td>
<td>0.636</td>
<td>0.647</td>
<td>−3.7</td>
</tr>
<tr>
<td>Pt_2HfAl</td>
<td>0.642</td>
<td>0.650</td>
<td>−2.8</td>
</tr>
<tr>
<td>Pt_2ZrAl</td>
<td>0.643</td>
<td>0.651</td>
<td>−2.6</td>
</tr>
<tr>
<td>$Pt_2(Hf_{0.75}Zr_{0.25})Al$</td>
<td>0.638</td>
<td>0.649</td>
<td>−3.4</td>
</tr>
<tr>
<td>$Pt_2(Hf_{0.25}Zr_{0.75})Al$</td>
<td>0.641</td>
<td>0.650</td>
<td>−2.9</td>
</tr>
<tr>
<td>$PtPdHfAl$</td>
<td>0.636</td>
<td>0.648</td>
<td>−3.7</td>
</tr>
<tr>
<td>$PtPdZrAl$</td>
<td>0.640</td>
<td>0.648</td>
<td>−3.1</td>
</tr>
</tbody>
</table>

Downloaded 03 Oct 2006 to 129.105.37.204. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
peated arc melting of pure Pd, Al, Hf, and Zr metals under a Ti-gettered pure argon (99.998%) atmosphere. A differential thermal analysis (DTA) examination indicated that as-cast Pd$_2$HfAl and Pd$_2$ZrAl alloys begin melting at ~1440 °C and ~1350 °C, respectively. The Pd$_2$HfAl and Pd$_2$ZrAl alloys wrapped with pure Ta foils were homogenized at 1200 °C for 100 h under a Ti-gettered argon atmosphere and followed by furnace cooling. The Pd$_2$HfAl and Pd$_2$ZrAl alloys were then sliced and assembled into a diffusion couple. To test for the intermixing of Hf and Zr at high temperature, the Pd$_2$HfAl/Pd$_2$ZrAl diffusion couple was annealed at 1100 °C for 50 h. A backscattered electron (BSE) image of the cross section of the Pd$_2$HfAl/Pd$_2$ZrAl diffusion couple is shown in Fig. 2, where a continuously varying contrast was observed in the diffusion reaction zone between Pd$_2$HfAl and Pd$_2$ZrAl.

Focusing on the case with the weaker mixing interaction, for further analysis, an electron probe microanalysis (EPMA) was used to measure the Pd, Hf, Zr, and Al concentrations (Fig. 3) over the diffusion reaction zone. The EPMA analysis was carried out on the uncoated specimens at an acceleration voltage of 18 kV and a beam current of 20 nA, which eliminated Zr Kα excitation and interference with Hf Lα. A “Probe for Window” software solved serious interference problems of the sixth-order Hf Lβ4 and second-order Pd Lβ1 lines with the first-order Al Kα line, and the first order Hf M5-O1 line with the first-order Zr Lα line. In reality, it is difficult to synthesize an alloy with a composition in exact coincidence with the nominal composition. Thus, compositions of both Pd$_2$HfAl and Pd$_2$ZrAl can deviate from their exact stoichiometric compositions and retain the phase structure, meaning that the Pd and Al concentrations in the Pd$_2$HfAl and Pd$_2$ZrAl phases need not be exactly the same. Most importantly, Fig. 3 exhibits the symmetrical change of the Hf and Zr concentrations over the diffusion reaction zone, indicating that their composition sum is constant. In other words, the Hf and Zr atoms substitute readily for each other and form a complete solid solution of Pd$_2$(Hf$_x$Zr$_{1-x}$)Al over the entire diffusion reaction zone, in full agreement with the calculation prediction. A more detailed phase diagram study is highly desirable to provide further essential information on the phase and microstructure development of Nb-L2$_1$ combinations.

This example supports the reliability of integrating rigorous first-principles calculations in the thermodynamic design of complex multicomponent alloys. Specific parameters determined here provide important input for quantitative optimization of the multicomponent (Pd,Pt)$_2$(Hf,Zr)AlL$_2$1 phase, balancing a tradeoff among thermodynamic stability, lattice misfit, and raw material cost in the pursuit of Nb-based superalloys capable of operation at 1300 °C.

The financial support of AFOSR MEANS Grant No. F49620-01-1-0529 is gratefully acknowledged.

